Popliteal Artery Injury
Multidisciplinary Approach

Mr Kumaraguru V K Pillay
Dept of Surgery
Hospital Kuala Lumpur
Case 1

- 23 year old man involved in an MVA
- Sustained closed right tibial plateau fracture
- Time of presentation from MVA site to hospital 5 hours
- Referred to Vascular unit 8 hours later for right lower limb cold and pale
- Pulse ?
Case 2

- 27 year old man involved in a gun shot incidence
- Right thigh gun shot wound noted
- Proceeded with CTA
- Referred to Vascular Unit 14 hours later
- Pulse ?
Documentation of Pulse

Crucial !!!
Introduction

- **Recognized** as the most limb threatening.
- It is a true end artery with tenuous collateral supply.
- Supplies the bulk of the lower limb and foot drainage.
- This is why it is so **DANGEROUS**!

Anatomy
Epidemiology

- Popliteal artery injuries account for 19% of all extremity arterial injuries.
- 5.6 per 1000 cases of penetrating trauma
- 1.6 per 1000 cases of blunt trauma.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>No. Penetrating Amputations</th>
<th>(%)</th>
<th>No. Blunt Amputations</th>
<th>(%)</th>
<th>No. Total Amputations</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conkle</td>
<td>1975</td>
<td>13</td>
<td></td>
<td>14</td>
<td>27</td>
<td>27</td>
<td>44</td>
</tr>
<tr>
<td>Daugherty</td>
<td>1978</td>
<td>11</td>
<td>3</td>
<td>13</td>
<td>5</td>
<td>24</td>
<td>33</td>
</tr>
<tr>
<td>O'Reilly</td>
<td>1978</td>
<td>49</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>49</td>
<td>12</td>
</tr>
<tr>
<td>Lim</td>
<td>1980</td>
<td>19</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>31</td>
<td>—</td>
</tr>
<tr>
<td>Holleman</td>
<td>1981</td>
<td>18</td>
<td>1</td>
<td>14</td>
<td>3</td>
<td>32</td>
<td>4.5</td>
</tr>
<tr>
<td>Fabian</td>
<td>1982</td>
<td>125</td>
<td>23</td>
<td>40</td>
<td>21</td>
<td>165</td>
<td>44</td>
</tr>
<tr>
<td>Snyder</td>
<td>1982</td>
<td>81</td>
<td>7</td>
<td>29</td>
<td>7</td>
<td>110</td>
<td>14</td>
</tr>
<tr>
<td>McCabe</td>
<td>1983</td>
<td>5</td>
<td>0</td>
<td>19</td>
<td>4</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>Orcutt</td>
<td>1983</td>
<td>20</td>
<td>1</td>
<td>17</td>
<td>5</td>
<td>37</td>
<td>6</td>
</tr>
<tr>
<td>Yeager</td>
<td>1984</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Shah</td>
<td>1985</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Downs</td>
<td>1986</td>
<td>10</td>
<td>2</td>
<td>53</td>
<td>16</td>
<td>63</td>
<td>18</td>
</tr>
<tr>
<td>Krige</td>
<td>1987</td>
<td>14</td>
<td>0</td>
<td>14</td>
<td>3</td>
<td>28</td>
<td>3</td>
</tr>
<tr>
<td>Weiman</td>
<td>1987</td>
<td>11</td>
<td>0</td>
<td>25</td>
<td>1</td>
<td>36</td>
<td>1</td>
</tr>
<tr>
<td>Armstrong</td>
<td>1988</td>
<td>60</td>
<td>4</td>
<td>16</td>
<td>5</td>
<td>76</td>
<td>9</td>
</tr>
<tr>
<td>Peck</td>
<td>1990</td>
<td>32</td>
<td>2</td>
<td>76</td>
<td>11</td>
<td>108</td>
<td>13</td>
</tr>
<tr>
<td>Reed</td>
<td>1990</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Martin</td>
<td>1994</td>
<td>26</td>
<td>0</td>
<td>14</td>
<td>6</td>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>Degaaninis</td>
<td>1995</td>
<td>35</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>Fainzilber</td>
<td>1995</td>
<td>63</td>
<td>4</td>
<td>18</td>
<td>9</td>
<td>81</td>
<td>13</td>
</tr>
<tr>
<td>Pretre</td>
<td>1996</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>6</td>
<td>31</td>
<td>6</td>
</tr>
<tr>
<td>Harrel</td>
<td>1997</td>
<td>0</td>
<td>0</td>
<td>38</td>
<td>14</td>
<td>38</td>
<td>14</td>
</tr>
<tr>
<td>Melton</td>
<td>1997</td>
<td>62</td>
<td>8</td>
<td>40</td>
<td>17</td>
<td>102</td>
<td>25</td>
</tr>
<tr>
<td>Razuk</td>
<td>1998</td>
<td>15</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>678</td>
<td>71</td>
<td>531</td>
<td>146</td>
<td>1209</td>
<td>217</td>
</tr>
</tbody>
</table>

Penetrating (%) = (Penetrating Amputations / Total Penetrating) * 100
Blunt (%) = (Blunt Amputations / Total Blunt) * 100
Vascular Injury

“The clock starts to tick”

Irreversible damage occurs in 6 hours

- Blood loss
- Progressive ischemia
- Compartment syndrome
- Tissue necrosis
Vascular Injury

Potentially frequent incidence

- Proximity of vessels to bone
- Tethering of vessels at joints
- Superficial location of vessels
Arterial injuries associated with fractures or dislocations

<table>
<thead>
<tr>
<th>Injury Type</th>
<th>Artery Injured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clavicle fracture</td>
<td>subclavian artery</td>
</tr>
<tr>
<td>Shoulder fx/dislocation</td>
<td>axillary artery</td>
</tr>
<tr>
<td>Supracondylar humerus fx</td>
<td>brachial artery</td>
</tr>
<tr>
<td>Elbow dislocation</td>
<td>brachial artery</td>
</tr>
<tr>
<td>Pelvic fracture</td>
<td>gluteal arteries</td>
</tr>
<tr>
<td>Femoral shaft fx</td>
<td>femoral artery</td>
</tr>
<tr>
<td>Distal femur fracture</td>
<td>popliteal artery</td>
</tr>
<tr>
<td>Knee dislocation</td>
<td>popliteal artery</td>
</tr>
<tr>
<td>Tibial plateau fracture</td>
<td>popliteal artery</td>
</tr>
</tbody>
</table>
Mechanism of injury

- Penetrating trauma
 - GSW
 - Stab

- Blunt trauma
 - High energy
 - Low energy

- iatrogenic
Types of Vascular Injury

- Spasm
- Intimal flaps
- Subintimal hematoma
- Laceration
- Transection
- A-V fistula
Prognostic Factors

- Level and type of vascular injury
- Collateral circulation
- Shock/hypotension
- Tissue damage (crush injury)
- Warm ischemia time
- Patient factors/medical conditions
Speed is crucial

Protocol Is Essential!

- Rapid resuscitation
- Complete, rapid evaluation
- Urgent surgical treatment
Diagnosis
Physical exam
Doppler ultrasound
Duplex scanning
Imaging
Exploration

Careful physical exam and high index of suspicion are most important!
Hard Signs

- Major hemorrhage/hypotension
- Arterial bleeding
- Expanding hematoma
- Altered/absent distal pulses
- Temperature differential between extremities
- Injury to anatomically-related nerve
- Distal Ischemia (The 5 P’s)

<table>
<thead>
<tr>
<th>Author</th>
<th>No. KD</th>
<th>Hard Signs Present</th>
<th>Hard Signs Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. (%)</td>
<td>Surgery (%)</td>
<td>No. (%)</td>
</tr>
<tr>
<td>Kaufman et al</td>
<td>19</td>
<td>4 (21)</td>
<td>4 (100)</td>
</tr>
<tr>
<td>Treiman et al</td>
<td>115</td>
<td>29 (25)</td>
<td>22 (75)</td>
</tr>
<tr>
<td>Dennis et al</td>
<td>38</td>
<td>2 (13)</td>
<td>2 (100)</td>
</tr>
<tr>
<td>Kendall et al</td>
<td>37</td>
<td>6 (16)</td>
<td>6 (100)</td>
</tr>
<tr>
<td>Miranda et al</td>
<td>32</td>
<td>8 (25)</td>
<td>6 (75)</td>
</tr>
<tr>
<td>Martinez et al</td>
<td>23</td>
<td>11 (48)</td>
<td>2 (18)</td>
</tr>
<tr>
<td>Hollis et al</td>
<td>39</td>
<td>11 (28)</td>
<td>7 (64)</td>
</tr>
<tr>
<td>Stannard et al</td>
<td>134</td>
<td>10 (8)</td>
<td>9 (90)</td>
</tr>
<tr>
<td>Total</td>
<td>437</td>
<td>81 (18)</td>
<td>58 (72)</td>
</tr>
</tbody>
</table>
Extremity Blunt Trauma Vascular Injury Algorithm

Hard Signs of Vascular Injury
• Expanding/Pulsatile Hematoma
• Pulseless, pallor, paresthesia, pain, paralysis, poikilothermia
• Bruit/Thrill
• Absent Doppler Signals
• API (< 0.9)

+ Hard Signs of Possible Vascular Injury

Fracture

Yes

Fracture Reduced

Yes

Normal Pulses

Yes

API Normal (≥.90)

No

Reduce Fracture

+/-/ Pulses

API Normal (≥.90)

Serial Exam

Vascular Surgery Consult

Yes

ORB vs. CTA vs. Angiogram

No

Serial Pulse Exam

Pulse Exam Changes

API ≥ .90

No

Serial API Examinations
Penetrating Extremity Vascular Injury

- Active Hemorrhage
 - Direct Pressure
 - Emergent Vascular Consult
 - OR vs. CTA vs. Angio
 - No Active Hemorrhage
 - Emergent Vascular Consult
 - CTA vs. Angio vs. OR

Hard Signs of Vascular Injury
- Expanding/Pulsatile Hematoma
- Pulseless, pallor, paresthesia, pain, paralysis, poikilothenmia
- Bruit/Thrill
- Absent Doppler Signals
- Arterial Pressure Index, API, (< 0.9)
Asymmetric pulses warrant doppler examination.

Absent pulses warrant emergent vascular consultation/surgical exploration.
Rutherford Classification

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Cap. refill</th>
<th>Paralysis</th>
<th>Sensory loss</th>
<th>Doppler</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Viable</td>
<td>Intact</td>
<td>-</td>
<td>-</td>
<td>Aud</td>
</tr>
<tr>
<td>IIa</td>
<td>Threatened</td>
<td>Intact/slo</td>
<td>Partial</td>
<td>Partial</td>
<td>_</td>
</tr>
<tr>
<td>IIb</td>
<td>Threatened</td>
<td>Slow/abse</td>
<td>Partial</td>
<td>Partial</td>
<td>_</td>
</tr>
<tr>
<td>III</td>
<td>Irreversible</td>
<td>Absent</td>
<td>Complete</td>
<td>Complete</td>
<td>_</td>
</tr>
</tbody>
</table>
Most limb-threatening complications of delayed diagnosis of popliteal vascular injury are the result of overlooking hard signs, rather than an absence of signs, on initial presentation.

Doppler ultrasound

- Determine presence/absence of arterial supply
- Assess adequacy of flow

Presence of signal does not exclude arterial injury!
Doppler ultrasound

- Does not define extent or level of injury
- Abnormal values warrant further evaluation

Mills, et al. J. Trauma 2004
Duplex scanning

- Noninvasive
- Safe
- Rapid
- Reliable for
 - Injury to arteries and veins
 - A-V fistulas
 - Pseudoaneurysms
TOTAL (n=100)
No Significant Difference

DUPLEx SCANNING
Sensitivity = 90%
Specificity = 68%

ARTERIOGRAPHY
Sensitivity = 80%
Specificity = 95%

Panetta et al, J. Trauma 1992
Angiography

- Locates site of injury
- Characterizes injury
- Defines status of vessels proximal and distal
- May afford therapeutic intervention
- Multiple long bone fractures
Angiography

- Expensive
- Time-consuming
- Difficult to monitor/treat patient
- Procedural risks
 - Renal burden from dye
 - Possibility of anaphylaxis
 - Injury to proximal vessels
Operative angiography

- Single view in operating room
- Rapid
- Excellent for detecting site of injury
- Reduces wastage of time
Missed Injuries: Case of Trauma
Hide and Seek

- Incidence 2 % till 50%
- Leads to increased morbidity and mortality
WHY?

- Instability of patients
- Level of conscience
- Inexperienced of health care provider
- Radiology errors
- Technician errors
- Admission to an inappropriate service
- Inadequate exploration
- Inadequate index of suspicion in the presence of injuries
Management
Surgical exploration

Immediate exploration is indicated for:

- Obvious arterial injury on exam
- No doppler signal
- Site of injury is apparent
- Prolonged warm ischemia time
Reduce, stabilize, resuscitate

- **No pulses**
 - Injury obvious
 - Angiography or duplex
 - Surgery

- **Asymmetric pulses**
 - Multilevel injury?
 - Doppler
 - Absent
 - Angiography or duplex
 - Present
 - Observation

- **Normal exam**

Modified from Brandyk, CORR 1005
Conclusions

- Time is crucial
- Most important for diagnosis
 - High index of suspicion
 - Thorough physical exam
- Have a defined protocol/relationship
Thank You